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ABSTRACT The economic viability of the modern day mine is highly dependent upon careful planning and

management.

considerations will ensure that this situation will remain in the foreseeable future.

Declining trends in average ore grades, increasing mining costs and environmental

The operation and

management of a large open pit mine having a life of several years is an enormous and complex task.
Though a number of optimization techniques have been successfully applied to resoive some important
problems, the problem of determining an optimal production schedule over the life of the deposit is still very
much unresolved. In this paper we will discuss some of the techniques that are being used in the mining
industry for production scheduling indicating their limitations. In addition, we present a mixed integer linear
programming model for the scheduling problems along with a Branch and Cut solution strategy.
Computational results for practical sized problems are discussed.

1. INTRODUCTIOM

The operation and management of a large open pit
mine s an enormous and compiex task,
particularly for mines having a life of many years,
Optimization ~techniques ™ can ~be  successfully
applied to rescive a number of important
problems that arise in the planning and
management of a mine. These applications
inciude: ore-body modelling and ore reserve
estimation; the design of optimum pits; the
determination of optimal production schedules;
the determination of optimal operating layouts;
the determination of optimal biends; the
determination of eguipment maintenance and
replacement policies; and many more (Caccetta
and Giannini [1986,19901).

A fundamental problem in mine planning is that
of determining the optimum vitimate pit limit of a
mine. The optimum uitimate pit of a mine is
defined to be that contour which is the result of
extracting the volume of material which provides
the total maximum profit whilst satisfying the
operational requirement of safe wall slopes. The
ultimate pit limit gives the shape of the mine at
the end of its life. Usually this contour is
smoothed to produce the final pit cutline.

Optimum pit design plays a major role in ail
stages of the life of an open pit: at the feasibility

study stage when there is a need to produce a

—.whole-of:life pit. design;.at. the. operating. phase
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when pits need to be developed to respond to
changes in metal prices, costs, ore reserves, and
wall slopes; and towards the end of a mine’s life
where “the final  pit “design ~may altow  the
economic termination of a project.

The ultimate pit limit problem has been
efficiently solved using the Lerchs-Grossmann
[1965] graph thecretic algorithm or Picard’s
[1976] network flow method {see also Caccetta
and Giannini [1986]). A comparative analysis of
the two methods is given by Caccetia et al [1994].
Optimurmn pit design plays an important rele in
mine scheduling.

The open pit mine production scheduling problem
can be defined as specifying the sequence in
which “blocks” shouid be removed from the mine
in order to maximise the total discounted profit
from the mine subject to a variety of physical and
sconomic constraints. Typically, the constraints
relate to: the mining extraction sequence; mining,
milling and refining capacities; grades of mill
feed and concentrates; and various operational
requirements such as minimum pit bottomn width.

The scheduling problem can be formulated as a
mixed integer linear program (MILP). However,



in real applications this formulation is too large,
in terms of hoth the number of variables and the
aumber of constraints. to selve by any available
MILP software,

2. MODEL

In this section we outline some of the methods
that  have been proposed for various mine
development problems. We begin with the basic
block model of an ore body, then we present a
mixed integer finear programming formulation of
the scheduling problem.

Though a mumber of models are available, the
regular 3D fixed-block model is the most
commonty used and is the best suited to the
application  of  computerized  optimization
technigues (Gignac [19757 and Kim {1979]). This
madel is based on the ore body being divided into
fixed-size blocks. The block dimensions are
dependent on the physical characteristics of the
mine, such as pit slopes, dip of deposit and grade
variabifity as well as the equipment used, The
centre of each block is assigned, based on drill
hole data and a numerical technique, a grade
representation of the whole block. The numerical
technique used Is some grade extension method
such  as:  distance  weighted  interpolations,
repression analysis, weighted moving averages
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Using the financial and metallurgical data the net
profit of each block is determined. The wall slope
requirements for each block are described by a set
(typically 4 to 8) of azimuth-dip pairs. From
these we can ideatify for each hiock x the set of
blocks S, which must be removed before block x
can be mined. This collection of blocks, x W Sa
is usually referred to as a “cone™.

The key assumptions in the block mode] are: the
cost of mining each block does not depend on the
sequence of mining; and the desired wall slopes
and pit shape can be approximated by the
removed blocks.

2.2 A MILP Formulation of The Scheduling

Problem
Let
T is the number of periods over which the
mine is being scheduled,
N is the total number of blocks in the ore
body.
(,‘, is the profit (in NPV sense) resulting

from the mining of block 1 in period t.
o is the set of ore blocks.

W is the set of waste blocks.

t; is the tonnage of block i.

m' is the tonnage of ore milled in period 1,

S the set of blocks that must be removed

prior to the mining of

block 1,

{ [, if blockiis mined in periods | to ¢

G, otherwise.

56 lower bound on the amount of ore that
i3 milled in period t.

ué upper bound on the amount of ore that
is milled in period 1.

u‘;_, upper bound on the amount of waste
that is mined in period t.

Then the MILP formulation is:

Maximize
I ¥ r—1 [ 8o T
Z=3 % ole —elxT + Y0 x {H
=2 = =l
subject to
Zr,-xf =m' {2)
=0
Stilxl -xNy=m', =231 (3
e}
S <ul (4r
el A e e
S -xyul t=23.T (5)
e W
W gxl, t=23,..T. (6)
xSxp, =12,0Tjes;  i=12,.N. (7)
thsm' Sul, t=12.T. (8)
£ =04, foralii t. (9)

Constraints (2}, (3) and (8) ensure that the milling
capacities hold. Constraints (4) and (3) ensure
that the tonnage of waste removed does not
exceed the prescribed upper bounds. Constraints
{6) ensures that a bleck is removed in ane period
only. Constraints  (7) are the wall slope
restrictions.  This formulation can be extended to
include other factors such as: different ore types;
maximum vertical depth; minimum pit bottom
width; and stockpiles.

The above formulation has NT 0-1 variables, and
{N+2)T + N(d-I) linear constraints, where d is the
average number of elements in a cone. Typically



T s around 10, N is 100,000 for a small pit and
over LOO0,000 for a farger pit. Consequently the
MILP's that arise are much too large for direct
application of commercial packages. However, as
we demonstrate in this paper, the structure of the
problem can  be explotted 1o develop
computalional strategies that produce provably
good solutions.

3. SOLUTION METHODS

Solving MILP's such as (1) - (9) is a difficult and
challenging task. Indeed, in the mining context,
the lack of an numediate optimization technique
has led the miming mdustry to focus on easy
subproblems. The usual approach is to first
determine the final pit outline and then through a
series  of refinements mining schedules are
generated. The final pit cutline is determined by
smoothing the contour produced by solving the
ultimate pit limit problem; that is, the solution to
the problem (1) subject to (7) with T = | and (9.

3.1 Parameterization Method

In their paper Lerchs and Grossmann [1963]
introduced the concept of parametric analysis in
order to generate an extraction sequence. They
considered the undiscounted model and varied the
economic value of each block 1 from ¢, to {¢; - &)
for varyling A = 0. An increasing sequence of A
values gives rise 1o a sel ol nested pits. These pits

e g measure in the design of the final pit
contour subject to a change 1n price and thus
some sensitivity analysis can be performed.

The main disadvantages include:

» time and other variable factors {for example,
extraction rate, different ore types, blending,
ete.) are only mmplicitly included in the
optimization through modifying the cost
function.

s the possibility of a large increment in the
size of the pit from coe nested pit to the
next. This is referred to as the “gapping
problem™ and it arises because there is no
clear method for choosing the values of A.

e  optimality is not guaranteed. Indeed the
“best” schedule may not even provide an
upper bound for the NPV of the mine.

Another commercially available package which
extends the nested pit approach is the Earthwaorks
NPV Scheduler [www.earthworks.com.au]. This
package first generates the nested pits and then
using these, the pushbacks are defined
heuristically. The criteria for the pushbacks is w
keep them as close as possible to the extraction
sequence suggested by the nested pits taking into
consideration equipment access.  Finally, a
restricted tree search procedure is used to
resequence the pushback removal to increase the
NPV. A major advantage of this package is that it
may produce schedules that are more likely o be

can-beused - to-produceo-production-scheduter
Since this early work a number of authors have
considered the implementation aspects of this
method and s variations (Francois-Bongarcon
and Guibal {1984], Caccetta et al. [1998a, 19985],
Caléou {19881, Dagdelen and fohnson [1986],
Matheron [1975a. 1973b], and Whittle [1993,
19987,

The mostly widely used scheduling software
package that is based on parameterization, is
Whittle's Four-D and Four-X [1993, 1998]; the
fatter allows for moltiple ore types in the
calculation of block costs. Whittle snggests that a
“best” mining schedule comes from extracting
each ol the nested pits in turn and a “worst”
schedule comes from extracting the ore bench by
bench.

The main advantages of the Whittle approach
include
o the nested pits can be determined efficiently
as each requires the solution of an ultimate
pit fimit problem.
o the identification of clusters of high grade
ore in the model.
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spacial constraints are taken into account when
defining the pushbacks.

Unfortunately, all methods that use the above
nested pits approach in a sequential optimization
procedure may produce a schedule that varies
considerably from the optimum. Indeed, even a
feasible solution cannot be guaranteed.

3.2 MILP Approach :

The major computational difficulty with MILP
formulations has been the size of the problem.
Below we outline two approaches for solving the
MILF formulations.

Recently, Combinatorics Pty Ltd (Western
Australia) has released the package MineMax for
fong term mine scheduling. The MILP is solved
using a commercial package (for example,
CPLEX).  Our understanding is that if the
probtem is too large for the MILP solver, or if a
solution is not obtained within a prescribed time
period, then a second option is offered.  This
option 15 to solve each MILP formulation for free
variables on a period by period basis.



e

The main disadvantage of MineMax is that it is
capable of sclving oaly very small size problems
due to the large number of integer variables and
constraints.

Cuccetta et al [1998] proposed a Lagrangian
relaxation method for solving the MILP. At each
step @ problem similar to the ultimate pit limit
problem s solved optimally with additional
constraints dualized. Subgradient optimization is
used to reduce the duality gaps. The method is
tested on a real ore body with 20,979 blocks and 6
time periods. The schedules obtained are within
3% of the theoretical optimum. The main problemn
with the method is resoiving the duality gaps.
However,  the subproblems are useful in
producing sotutions using a heurnistic. In fact, the
heuristic solution obtained for the real ore body is
within 2% of the theoretical optimum.

3.3 Heuristics

Runge Mining Pty Ltd have developed the XPAC
Autoscheduler package (www.runge.com/xpac)
for mine scheduling. Their heuristic approach is
based on the method proposed by Gershon [1987]
which iteratively selects blocks to be extracted on
a period by period basis. A weighted function s
used to determine the removal sequence. At each
step only blocks whose predscessors have been
mined are considered. The advantage of the
method is its speed. Its main use is an interactive
wol where the user can see a large number of
scenarios by fixing in and out blocks and running
the heuristic. The main disadvantages are: the
search is myopic: no goarantee of finding a
teasible solution; the obtained solution may be far
from optimat. The method has been applied to
models with up to 160,000 blocks.

Tolwinski and Underwood [1996] proposed a
method which combines concepts from stochastic
optimization and artificial neural networks with
heuristics explotting the structure of the mine.
The method works by modelling the development
of the mine as a sequence of pits {states) where
each pit differs from the previous pit by the
removal of one block (state change). A
probability distribution based on the frequency
with which particular states occur is used to
determine the state changes. Heuristic rules are
incorporated to learn these characteristics of the
sequence of pits which produce a good, or poor,
resull. Only smail problems can be attempied.

3.4 A MNew Branch And Cut Method
Our work is motivated by the recent success of

this approach to various large combinatorial
optimization problems (Caccetta and Hill [1999]).
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Essentially, the methed adds constraints {cuts) at

each node within a Branch and Bound procedure.

The MILP is relaxed io a linear program (LP)

which is solved optimally. At each node, the set

K of valid inequalities for the original problem is

checked for violations using the relaxed solution.

If none are found, the process terminates,

otherwise the violating inequalities are added to

the relaxed problem and the process is repeated.

If the process terminates in & non optimal

solution, it is necessary to branch. We now detail

some of the important features of our method
which exploits the structure of the problem,

Key Features:

1. The block medel 1 reduced to only include
blocks inside the final pit design developed
from the ultimate pit. Further reductions are
made through constderation of (23 - (5) and

(7).

2. The MILP has strong branching variables due
to the dependencies between variables {(6}
and (7)). Note that setting a variable to 0 or |
will fix a potentially large number of other
variables,  Consequently the subsequent LP
relaxations are significantly smaller in size.
This motivates more branching compared to
typical Branch and Cut methods.

[}

Cutting planes involving Knapsack constraints
are identitied using the capacity upper bounds
L2y - (3)) and the block removal dependencies
{7). Also cuts are identified through material
removal dependencies between benches.

4. Our search strategy involves a combination of
best first search and depth first search. The
motivation for this is to achieve a “pood
spread” of possible pit schedules (best first
search) whilst benefiting from using depth
first search where successive LP's are closely
related from one child node to the next. For
large problems this often results in provably
good solutions being found earlier than a
sgarch method geared o establishing an
optimal solution.

5. Good lower bounds are generated through the
use of an LP-Heuristic, The method works by
considering each period in turn and fixing in
and out sets of free variables. Cutting planes
are then generated for the period, further LP’s
are solved and further fixing occurs,
Throughout the fixing of variables feasibility
checks are used. If the heuristic succeeds, or
fails due to an mferior fower bound being
found, then periods are considered in the same
direction, otherwise the direction is reversed.
The heuristic is calied for the first five levels



of the search tree and every eighth node

created thereafter,
6. Standard fixing of non basic variables using
reduced costs is carried out. Because of the
block ¢ependencies this may lead to the LP
solation losing its optimality. In this case we
call the LP solver and re-enter the cutting
plane generation phase without branching.

Muany branching rules were tested and the
following proved to be the best. The free
ariables are considered and a subset of these
is chosen on the basis of cleseness to the vaiue
of 0.5, TFor each variable in the subset we
calculate the sum change in the fractional
values of all variables dependent on the
inciusion and exclusion of the branching
vartable. Chaose the one with the highest
minimal sum change in both directions of
branching. Strong branching is used if the gap
between the lower and upper bound s
sufficiently small,

ff the LP subproblem is not solved within a
prescribed maximum time {2 minutes), then
the LP optimizaiion is termisated and
branching 15 performed using the rules in 7
above. An attempt is then made to solve the
resulting LP’s within the specified time. This
process is repeated as long as necessary.

:
37

~Fhe-cutting-plane-phase-is-terminated-sarly
tailing-off is detected or if the LP subproblem
is solved optimally in more than a prescribed
fime (1 minute). Note that adding further
cutting  planes, even with  purging  of
ineffective constraints, tends to increase the
solution times for successive calls to the LP
solver.

=

. When branching we probe a random subset of
varigbles having the same time index as the
branching one. Bounds on variables may aiso
be updated during this process.

CAIL our LP subproblems are solved using
CPLEX Version 6.0
Or

COMPUTATIONAL  RESULTS

NEW METHOD

4.

Our Branch and Cut algorithm has been
implemented in C++ on an SGI Origin 200 dual
processor compuier. The dual processor was only
used 1o solve the relaxed LP’s. The software has
been extensively tested both on test data provided
to us by our indusiry partner as well as data from
producing mines.

— B899~

The models in our test data range from 26,208 to
209,664 blocks. In all cases T = 10, We ranged
the constraints on the amount of material removed
as well as the bounds on the milling requirements
so as to cover the large number of cases that can
actually occur. For the smaller models solutions
guaranteed to be within 0.4% of the optimum
were obtained within 12 minutes. For the targest
model, solutions guaranteed to be within 2.3% of
the optimum were obtained within 4 hours. For
these larger madels we continue the computations
for a further |6 hours and observed there was
negligible change in the gap.

Qur method generates tight bounds. However,
establishing optimality (except, of course. tor
small problems) is difficult because once we
achieve a near optimal solution there are no
available cutting planes to remove fractional
variables occurring in the same bench level. Note
that {6) and {7} give dependencies between
variables corresponding o block removal in time
and the vertical dimension, but ot horizontally.

Following the above extensive testing we appiied
our method fo a producing gold mine. This mine

as  operating on a schedule generated by
MineMax. In order to make a meaningful

comparison with this schedule we simulated the
same test conditions used by MineMax. This
involved reblocking the original block model
which contained 23 million blocks to one
containing..1363.blocks... However,. as rebtocking
was carried out with different packages, the total
value of the undiscounted pit used in our model
was 3.3% less. In this application T = 6 and the
discount ate was 10% " The constraints involved
material movement and an upper bound on the
milling capacity (per period).  Our soltware
generated 7 good schedules within a total time of
10 minutes. Cur best schedule was within 0.27%
of the optimum and validated by mining
engineers as being realistic. Cur schedule yielded
an increase of 13.1% in the NPV profit. In fact
taking inte account the differences in the block
model our solution value was at least 15% higher.

The MineMax solution {which was supplied to
the mining company by the software author) was
obtained through a period by peried optimization
as the package could not solve globally within the
prescribed time Hmit.  An important ditference
between the two solutions is that ours generates a
significantly higher cash (low in the first two
periods. This is in fact consistent with the aim of
mine planners,



5. COMNCLUSION

This paper addresses a fundamental problem in
mine planning, that of determining an optimal
production  schedule, A critical examination
reveais considerable deficieacies in the methods
currently used by the mining industry. Our new
Branch  and Cut  method resolves these
deficiencies and provides powerful toois far
Improving the  efficiency  of  mining,
Computational  results  on  producing  mines
demonstrate the power of our method.
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